- 梅赛德斯-奔驰IAA(智能空气动力性能汽车)概念车是一款四门轿跑,其风阻系统达到了令人吃惊的0.19 cd。前方保险杠处的延伸可以优化流过车头和轮毂的气流。车辆前保险杠上的气窗则可以优化车辆下方的气体流动。
- 增长性行业:“可变形”的梅赛德斯-奔驰IAA概念车的车尾处采用了8面可延展碳纤维板,可以将车辆长度增加至390 mm,车辆能够实现0.19 cd的风阻系数也部分归功于此。
- 梅赛德斯-奔驰B级 ED(电驱动)SUV展示了公司在推进系统更新换代方面的决心,并在一定程度上反映了梅赛德斯未来ED车型的走向。
- 电驱动梅赛德斯-奔驰B级SUV的仪表盘。
- 最新一代的梅赛德斯E级轿车可以提供一系列半自动驾驶功能。
- “在合适的地方采用合适的材料”,这就是梅赛德斯-奔驰轻量化结构策略的中心思想。现行版C级车就是一个例子。
- 作为戴姆勒集团研发与可持续发展副总裁、首席环境官,Anke Kleinschmit的职责范围涵盖了当今汽车行业的许多热点。
近日,戴姆勒集团(Daimler AG)研发与可持续发展副总裁、首席环境官 Anke Kleinschmit在接受《欧洲汽车工程》总编Stuart Birch的采访中,谈论了当今设计师和工程师面临的众多挑战,包括社会对汽车功能的预期变化非常迅速以及全球相关法规日益严苛等。
汽车工程:如今,车辆减重的关键仍在于混合材料,尤其是高强度钢材和铝材的混合应用吗?还是已经转向了其他领域?请问在不久的将来,碳纤维材料在大批量生产中是否常见?成本是否仍过于高昂?
Kleinschmit:在梅赛德斯-奔驰(Mercedes-Benz),我们在进行减重研发时的中心思想是‘在合适的地方采用合适的材料’。这是因为不同材料在质量、强度、刚度和防撞性方面的性能各有不同,应该在应用上有所选择。我们的工程师之所以可以成功实现减重,关键在于可以利用高强度钢、轻质合金、塑料及多种原料,打造一种最符合要求的混合材料。
对于车身、底盘和驱动系统方面的轻质技术,我们追求的目标非常明确:与之前版本相比,每款新车都要实现一定程度的减重。
举个例子,我们在生产发动机时会使用内部开发的Nanoslide工艺。通过采用这种工艺,我们可以在铝制曲轴箱内的气缸表面上增加了一层极薄的低摩擦涂层,这不仅有助于减轻重量,而且由于可以显著降低摩擦,还能带来大约每公里几克的CO2减排效果。
谈到碳纤维,我们确实在这种轻质材料的应用方面积累了丰富的经验;为了提高车辆的性能,当然还有降低重量,我们在梅赛德斯-奔驰的车型中使用了CRP材料,尤其是在以高性能著称的梅赛德斯AMG系列中。由于碳纤维仍是一种成本高昂的材料,我们在批量生产中必须考虑如何合理地混合不同钢材和先进铝合金,制造混合材料(车身)外壳。
汽车工程:虽然,电动车技术已经取得了一定进展,但您认为现阶段的技术水平可以在成本、使用寿命、质量和消费者接受程度方面满足梅赛德斯-奔驰,或者说整个汽车行业的要求吗?您认为纯电动车的成本何时才能与传统内燃机车型竞争?未来,燃料电池解决方案将走向何处?
Kleinschmit:从长远来看,我们完全相信动力传动系统的电气化是构建“移动性未来”的关键组成部分。
我们的理念是,利用不同的技术满足不同的需求,因此我们在追求“零碳排放”的道路上,一直采用非常灵活的策略:
首先,我们将继续最大限度地发掘高科技内燃机的潜力。其次,我们将增加对混合技术的应用,从而进一步降低消耗。最后,我们也在进行有关电池和/或燃料电池的研究,助力实现“本地驾驶零排放”的目标。
在质量、使用寿命及安全方面,我们将以同样的高标准要求旗下所有产品,不管车辆采用的是哪种动力系统。
虽然纯电动车仍需更多时间才能占据主导地位,但随着产品选择范围的不断扩大,纯电动车的市场占有率也在不断提高。
在初始阶段,新技术的成本自然会更高。然而,电动车已经在我们的产品组合中占据了相当高的比例,包括插电式混合动力车、B级ED(电驱动)及即将上市的新一代智能ED。这也是我们推出的第一款两座和四座智能ED车型。此外,我们还将在未来推出更多电动车型。在2020年以前,我们还将推出一款大型电动车,为公司的未来电气化战略奠定基础,即打造续航里程高达500 km的电动车。正因如此,我们已经投资5亿欧元在公司的电池产地Kamenz建立了第二座电池工厂。很显然,随着电池技术的不断发展,未来的电动车可以以较低的成本实现更高的续航里程。
不过,即使电池技术已经取得了长足的进步,但燃料电池汽车至少仍拥有一个明显优势:不受限制的续航里程和更短的充蓄时间。此外,燃料电池技术还可应用至轿车,甚至是城市大巴等较大车型。我们深信,无论是电动还是燃料电池,追求电动移动性一定是一项造福于全人类的投资。
汽车工程:汽车的空气动力性能还有提升空间吗?或者说我们必须面对现实,车辆的风阻系数将停留在0.22到0.25 cd之间?追求更佳的风阻系数是否会影响车辆设计(外形),还是车辆设计会制约车辆的风阻系数优化?
Kleinschmit:车辆的空气动力性能仍有一定提升空间,但提升将越来越困难。只要车辆的基本结构没有大的变化,比如长度和形状变化不大,“传统”汽车的风阻系数就很难突破0.20cd。我们在2013年推出了CLA轿车,其风阻系数在0.22 cd左右,这已经非常接近极限了。
为了进一步寻求便携性、空间及整体设计理念的最佳解决方案,我们可以借助一些主动空气动力优化措施,正如我们的“可变形的(Transformer)”ConceptIAA概念车所做的那样。
汽车工程:自动驾驶汽车的技术演示将继续进行,您认为自动驾驶汽车的推广是势在必行吗?如果是这样,那将是什么时候?现在摆在自动驾驶汽车面前的阻碍是在法规和保险方面,还是在技术层面?请您具体介绍一下。
Kleinschmit:对我们来说,现在的问题不是自动驾驶技术能否发展起来,而是将以怎样的速度发展?自动驾驶必将一步一步成为现实。
随着新款梅赛德斯-奔驰E级轿车的推出,我们已经可以为用户提供一系列半自动驾驶功能,包括驾驶领航(Drive Pilot)、主动变道协助(Active Lane-ChangeAssist)和远程停车领航(Remote Parking Pilot)等。
我们预计,首批高级自动驾驶系统将在短短几年内成为现实。具体来说,这批移动汽车仅能在时宜的气候环境下,在高速公路等特定路段下实现自动驾驶。全时全自动驾驶的实现则仍需要相当长的时间。为了在自动驾驶系统方面取得突破,法规和技术层面的问题都是我们需要面对的挑战。
消费者对自动驾驶功能的接受程度与其可靠性和可用性密切相关。除了高速公路等相对单纯的驾驶环境,自动驾驶功能还必须应对更加复杂的周边环境,并应对一系列移动或静止的目标,及不同的天气和日间条件等。
当然,法律问题仍需得到解决。很显然,“政治风向”以及最为重要的问题——社会接受度,是自动驾驶汽车何时问世的决定性因素。
汽车工程:CAD和CAE功能的发展跟的上行业的需求吗?还是有所领先?您能详细介绍一下吗?
Kleinschmit:进行数字化是戴姆勒的首要战略重点之一。无论是在产品研发、生产、物流,还是售后服务环节,我们都采用了最新的IT技术。
我们的目标之一是让成千上万分布在世界各地的戴姆勒工程师使用相同的工具,并拿到统一的数据。因此,我们也在各个分公司部署了同一套CAD软件和高效数据管理工具。这样一来,我们所有的员工都可以在产品和零部件的完整生命周期内,从开发到售后均使用同一套数据。
此外,我们将利用一系列先进技术,比如增强现实、快速计算机辅助模拟及三维打印技术等,进行数字化研发。在汽车这种竞争激烈的行业中,缩短新品上市周期至关重要,我们也为此做好了准备。
汽车工程:梅赛德斯-奔驰和整个汽车行业面临的主要技术挑战是什么?
Kleinschmit:“未来的交通运输”绝非仅仅关乎汽车本身。未来的汽车将具备完全互联、自动驾驶和零碳排放等特点,也将成为智能交通服务系统的重要组成部分,比如车辆可以在车主不需要驾驶出行的时候,参与戴姆勒公司的自动驾驶Car2Go车队。此外,创新的可持续发展移动性概念、智能网络和定制服务将在未来保证车辆的吸引力。“智能汽车”、“智能电网”、“智能交通”及汽车共享,都是重要的焦点话题。
当然了,我们仍将在前往移动性未来的道路上面对一些挑战,仅举几例:
• 实现互联功能,需要完整的移动网络覆盖。
• 自动驾驶的发展必须在法规监管框架之内。
• 实现零排放的交通运输,需要建立完整的充电基础设施。
• 智能交通运输服务意味着我们所有人都必须习惯新的出行方式。
尽管如此,作为汽车的发明者、研究者和开发者,梅赛德斯-奔驰的每一个员工都将微笑着迎接每一个挑战,塑造未来的交通运输!
作者:Stuart Birch
来源:SAE《汽车工程》杂志
翻译:SAE中国办公室
Sustainable transformation—the Daimler way
Interviewed by Automotive Engineering European Editor Stuart Birch, Anke Kleinschmit, Vice President Group Research and Sustainability and Chief Environmental Officer, Daimler AG, addressed issues facing today’s designers and engineers, such as society's rapidly changing expectations of automotive functionality and the many facets of ever-more stringent global legislation.
AE: Is reducing vehicle mass continuing to be a matter of combining materials, particularly high-strength steel and aluminum, or is the focus now on other areas to achieve lightweighting? Does carbon fiber remain too exotic and too costly for high-volume applications in the near- to mid-future?
Kleinschmit: Our lightweight construction strategy at Mercedes-Benz is derived from the dictum, 'The right material in the right place.' Depending on its operation purpose, each material has its own strengths in terms of weight, strength, stiffness and crash performance. The key success factor for our engineers is to define an intelligent material mix out of high-strength steels, light alloys, plastics and further materials.
When it comes to lightweighting technologies in body, chassis and drive, we pursue the clear goal to reduce the weight of all our new models in comparison to their predecessors.
For example, when it comes to the production of engines, we use the in-house developed Nanoslide process. Within this process, the cylinder surfaces in aluminum crankcases are provided with an extremely thin and low-friction coating, which not only helps to reduce weight, but also leads to a fuel (efficiency) advantage of several g CO2/km due to significantly reduced friction.
Talking about carbon fiber, we do have a quite extensive experience using it as a lightweight material; we use CRP materials in Mercedes-Benz cars, especially within the area of our high-performance cars from Mercedes AMG, to improve the performance and of course save weight. Since carbon fiber is still a very cost-intensive material, the main focus is on hybrid (body) shells with an intelligent mix of all steel grades and advanced aluminum alloys in mass production.
AE: Electric-vehicle technology is improving but are you confident of its ability to deliver (batteries, motors) what is required both for Mercedes-Benz and the auto industry in general, in terms of cost, longevity, quality, and buyer acceptance? When (if ever) would you expect pure EV cars to achieve unit costs lower than that of conventionally-powered models? What is the likely future for fuel cell solutions?
Kleinschmit: We are absolutely convinced that in the long run, the electrification of the drivetrain is one major element of the 'future of mobility.'
We believe that different technologies will apply to different requirements—and therefore pursue a flexible strategy on our path to zero-local-emissions driving:
First: we’re further maximizing the potential of high-tech combustion engines. Second, we’re increasing hybridization to further reduce consumption. Third, we’re working on zero-local-emissions driving with batteries and/or fuel cells.
Regarding quality, longevity and not least safety, we set the same high standards for all our products, independent of the type of drivetrain.
As for pure electric vehicles, it will be some time until our streets will be dominated by them, but with a growing product (range), the proportion is continuously improving.
It is natural that new technologies are more cost-intensive at the time of their introduction. But we already feel a great commitment to the electrified cars in our portfolio, from plug-in hybrids up to our B-Class ED (Electric Drive) and the upcoming new generation of the smart ED - the first time as a 2- and a 4-seater. And there is more to come. Before the end of the decade, we’re bringing a large electric vehicle to lay the foundation for our future electric strategy with a range of up to 500 km (311 mi). That’s why we are investing 500 million euros in a second battery factory on our battery production site in Kamenz. It is clear that battery technology increasingly allows higher ranges at decreasing costs.
But even if the battery technology is making great progress, the fuel cell will continue to have at least one clear advantage: generous range and short refueling times. In addition, the fuel-cell technology can be applied to larger vehicles such as sedans or even city buses. We are convinced that pushing e-mobility—whether with battery or fuel cell—is a perfect investment in the future of all of us.
AE: Can aerodynamics continue to improve or will they, realistically, plateau at a best of around of 0.22 - 0.25Cd? Do they inhibit design (styling)—or is design inhibiting the figures?
Kleinschmit: The potential for reducing air resistance has not been exhausted, although it will slow down. As long as there are no major changes in the basic architecture of vehicles—like their length and form—there is an asymptotic limit of about 0.20 Cd with "conventional" vehicles. With a drag coefficient of 0.22 our CLA, which we introduced in 2013, is coming quite close to this.
Finding the best solution for portability, space and our overall design philosophy can be further supported with active aerodynamic measures, like our "Transformer” Concept IAA’s features.
AE: Demonstrations of autonomous vehicle technology continue; do you regard its widespread introduction as inevitable? If so, when? Is it just legislation and insurance issues that inhibit its introduction, or technologies—if so, what technologies?
Kleinschmit: For us, it is not a question if the technology of autonomous driving will evolve, but at what pace this will happen. Autonomous driving will become reality step-by-step.
With the new E-Class we already offer a large variety of semi-autonomous driving functions, like Drive Pilot, Active Lane-Change Assist and Remote Parking Pilot.
We expect that it will be possible to realize the first highly-automated driving systems in just a few years on certain types of roads, such as autobahns, and in suitable weather conditions. Fully automated driving in any situation will take much more time to achieve; legislative and technology issues both play a major role in the challenges we are facing to reach the breakthrough of autonomous driving.
Customer acceptance of autonomous driving functions is closely linked to the degree of their reliability and availability. Away from motorways, such a function has to cope with the increasing complexity of the surroundings and manage a greater number of dynamic and static objects as well as different weather and daytime conditions.
And of course, the legal questions need to be resolved. It is clear that 'political will' and above all, social acceptance, are decisive factors for the introduction of autonomous vehicles.
AE: Are CAD and CAE capabilities keeping pace with the industry’s requirements and expectations—or leading them? Can you detail?
Kleinschmit: Digitalization is one of Daimler’s top strategic priorities. From product development, production and logistics to after sales; in all processes, the latest IT technologies are in use.
One of our goals is that the many thousands of our developers at our many locations worldwide all use the same tools and work on the same data. Therefore we deploy the same CAD software at our sites and have an efficient data management in place which further enables us to use the same data throughout the lifecycle of a product and parts—from development to after sales.
When it comes to digital development, we use state-of-the-art technology such as augmented reality, fast computer aided simulations and 3D printing. Reducing the time to market is crucial in a competitive environment such as the automotive industry and we are well prepared for this.
AE: What are the major technology challenges facing Mercedes-Benz and the auto industry in general?
Kleinschmit: The 'Future of mobility' goes far beyond the automobile itself. Tomorrow’s car is fully connected, drives autonomously and emission-free—and it might be part of an intelligent mobility service, e.g. as part of an autonomous car2go fleet when the owner does not need his car. Especially, innovative and sustainable mobility concepts, intelligent networking and tailored services will ensure the car’s attractiveness in the future. Particularly the areas of 'smart car,' 'smart grid' and 'smart traffic' and car-sharing are important focus topics.
Of course we are facing some challenges in this change process of mobility. To name only a few:
• Connectivity means depending on mobile network coverage.
• Autonomous driving also means talking about regulatory frameworks.
• Emission-free mobility means establishing the needed infrastructure of charging stations.
• Intelligent mobility services mean all of us to get used to new ways of traveling.
But as the inventor of the automobile, as researchers and developers—we at Mercedes love every challenge to shape the future!
Author:Stuart Birch
Source: SAE Automotive Engineering Magazine
等级
打分
- 2分
- 4分
- 6分
- 8分
- 10分
平均分
- 作者:Stuart Birch
- 行业:汽车
- 主题:动力与推进力